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Finite Quantum Field Theory in Noncommutative 
Geometry 
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We describe a self-interacting scalar field on a truncated sphere and perform the 
quantization using the functional (path) integral approach. The theory possesses 
full symmetry with respect to the isometries of the sphere. We explicitly show 
that the model is finite and that UV regularization automatically takes place. 

1. INTRODUCTION 

The basic ideas of noncommutative geometry were developed in Connes 
(1986, 1990) and in the form of matrix geometry in Dubois-Violette (1988) 
and Dubois-Violette et al. (1990). The applications to physical models were 
presented in Connes (1990) and Coquereaux et al. (1991), where the noncom- 
mutativity was in some sense minimal: the Minkowski space was not extended 
by some standard Kaluza-Klein manifold describing internal degrees of 
freedom, but by just two noncommutative points. This led to new insight 
into the SU(2)L | U(1)R symmetry of the standard model of electroweak 
interactions. The model was further extended in Chamseddine et al. (1992), 
extending the Minkowski space by a pseudo-Riemannian manifold, and thus 
including gravity. Such models, of course, do not lead to UV regularization, 
since they do not introduce any space-time short-distance behavior. 

To achieve UV regularization one should introduce noncommutativity 
into the genuine space-time manifold in the relativistic case, or into the space 
manifold in the Euclidean version. One of the simplest locally Euclidean 
manifolds is the sphere S 2. Its noncommutative (fuzzy) analog was described 
by Madore (1991, 1992, n.d.) in the framework of matrix geometry. A more 
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general construction of some noncommutative homogeneous spaces was 
described in Gross and Pre~najder (1993) using the coherent states technique. 

The first attempt to construct fields on a truncated sphere was presented 
in Madore (1992, n.d.) and Grosse and Madore (1992) within the matrix 
formulation. Using a more general approach, Grosse et al. (n.d.-a,b) investi- 
gated in detail the classical spinor field on truncated S 2. 

In this article we investigate the quantum scalar field (I) on truncated 
S 2. We explicitly demonstrate that UV regularization automatically appears 
within the context of noncommutative geometry. We introduce only those 
notions of noncommutative geometry that we need in our approach. In Section 
2 we define the noncommutative sphere and derivation and integration on 
it. In Section 3 we introduce the scalar self-interacting field (I) on the truncated 
sphere and the field action. Further, using Feynman (path) integrals, we 
perform the quantization of the model in question. Finally, Section 4 contains 
a brief discussion and concluding remarks. 

2. NONCOMMUTATIVE TRUNCATED SPHERE 

2.1. The infinite-dimensional algebra ~| of polynomials generated by 
x. = (Xh X2, X3) E R 3, with the defining relations 

3 
[Xi, Xj] : O, ~ X 2 = p 2 (1)  

i= I 

contains all the information about the standard unit sphere S 2 embedded in 
R 3. In terms of the spherical angles 0 and q~, we have 

x• = xt --- /x2 = pe • sin 0, x3 = p cos 0 (2) 

As a noncommutative analog of , ~  we take the algebra ~Jv generated 
by $ = ($1, -~2, $3), with the defining relations 

3 
[Xi, Xj] = iXeijk-~k, ~ .~2 = 132 (3) 

i=1 

The real parameter h > 0 characterizes the noncommutativity (later it will 
be related to N). In terms of Xi = (l/h)$i, i = 1, 2, 3, equations (3) are 
changed to 

i=I  

or putting X• = X~ +- iX2, we obtain 

= [,r = (5) 
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and 

1 C = )~3 2 + ~ (-~+X- + X-)~+) = p2k-2 (6) 

We shall realize equations (4), or equivalently equations (5) and (6), as 
relations in some suitable irreducible unitary representations of  the SU(2) 
group. It is useful to perform this construction using the Wigner-Jordan 
realization of the generators X;, i = 1, 2, 3, in terms of  two pairs of  annihilation 
and creation operators A~,, A*, ot = 1, 2, satisfying 

[A,. AI3] = [A*, A~] = 0, [A,. a~] = ~,~,~ (7) 

and acting in the Fock space ~ spanned by the normalized vectors 

1 
[n~, n2) = t .  , .  Ixl/2 (A~)"'(A~)"z[ O) (8) 

k~l . t t 2 . )  

where 10) is the vacuum defined by A110) = A2[0) = 0. The operators X'+ 
and X3 take the form 

1 
X+ = 2A~'A2, .~_ = 2A~'A,, X3 = ~ (N~ - N2) (9) 

where N,, = A*A~,, et = 1, 2. Restricting ourselves to the (N + 1)-dimen- 
sional subspace 

~,  = { I n t ,  n2) ~ ~} ( 1 0 )  

we obtain for any given N = 0, 1, 2 . . . .  The irreducible unitary representation 
in which the Casimir operator (6) has the value 

C = -~ + 1 (11) 

i.e., h and N are related as 

The states Inl, n2) are eigenstates of  the operator X3, whereas X§ and 
X_ are raising and lowering operators, respectively: 

x 3 1 , , , ,  ,~2> - n,  - n2 ~ 1'~,,"2> 

X+lnt, n2) = 2 [ ( n t  + 1)nz]l~21nt + 1, n2 - 1) 

X_[nl, n2) = 2[nt(n2 + 1) ]1 '21n l  - 1, n2 + l) (13) 
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Since Xi: ~Jv ~ ~N, we have 

dim ,~N -< (N + 1) 2 (14) 

2.2. As a next step we extend the notions of integration and derivation 
to the truncated case. The standard integral on S 2 

I f  l f i e f ]  I~(F) = ~ dfl F(x) = ~ dq~ sin 0 dO F(0, q~) (15) 

is uniquely defined if it is fixed for the monomials F(x) = xt+x'2_~. It is 
obvious that l~(xt+xS'_x'j) = 0 for l 4: m, and that x/§ = p2t+nsin210cos"0 
is a polynomial in cos 0 = x3. An easy calculation gives 

Ioo(~ "+') = O, /~(x] ~) _ p2. 
2 n +  1 

for n = O, 1, 2 . . . . .  Putting ~ = 13-~x3 = cos O, we see that 

l[, 
= d~ 6" (16) I=(~") ~ , 

These relations algebraically define the integration in ~g=. 
In the noncommutative case we put 

1 
Iv(F) - - -  Tr[F(s (17) 

N + I  

for any polynomial F(s e ~gs~ in .%, i = 1, 2, 3, where the trace is taken in 
~N. Again, the integrals I(s163 = 0 for l 4= m, since 

~ + ~ - ~ l n , ,  nz) ~ In, + l - m ,  n 2  + m - 1) 

Much as before, .f/+~_~ can be expressed using equations (5) and (6) as a 
polynomial in 23. The equation 

n2) = (h  - -  .1~3 [ n,, 

gives 

",  - n2 ,1"', 
n2) 

2 
(18) 

N pn 
IV(~3) = ~] ~ ~, (1 9) 

k = 0 N +  1 

where ~ = [N/(N + 2)]u2(2k/N - 1). The formula (19) can be rewritten as 
a Stieltjes integral with the stair-shape measure I~(~) in the interval ( -  1, + 1) 
with steps at the points ~k: 
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f_q N I IN(~") = dla.(~) ~" = ~ - -  ~ (20) 
l k = o N +  1 

Obviously. Iu(~3 #+l) = 0. and 

tN(~) (N/Z)"(N/2 + t ) " ( N  + l )  = 

Using the formula [see, e.g., Grosse et al. (n.d.-b), p. 597, equation (16)1 

N 1 
~ (k + a) m - - -  [Bm+I(N + 1 + a) - Bm+~(a)] 
k=0 m +  1 

where B,,,(x) are Bernoulli polynomials, we obtain 

92n 
lu ( .~ )  - C(N. n) (21) 

2 n +  1 

Here. 

B2,+t(NI2 + 1) - Bz.+l(-NI2) 
C(N. n) = (22) 

(NI2)"(NI2 + I)"(N + 1) 

represents a noncommutative correction. Since the Bernoulli polynomials are 
normalized as 

we see that 

Bin(x) = x m + lower powers 

C(N, n ) =  1 + o(llN) (23) 

i.e., in the limit N ~ co we recover the commutative result. 
The scalar product in ~=  can be introduced as 

(El. F2)o. = I=(F* F2) (24) 

and similarly in o~N we put 

(Fl, F2)N = Iu(F* F~) (25) 

2.3. The vector fields describing motions on S 2 are linear combinations 
(with the coefficients from ~=) of the differential operators acting on any F 

~ as follows: 

1 OF 
= - -  (26) Ji F -~ ~ijkxi 3xk 
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In particular, 

The operators Ji, i = 
relations 

[Ji, Jj] = i~ijkJk 

or for J_+ = Jl • i J2 they take the form 

[J3, J_] = •  [Y+, J - ]  = 2J3 

Jixj = ir (27) 

1, 2, 3, satisfy in .~/| the su(2) algebra commutation 

(28) 

(29) 

The operators Ji are self-adjoint with respect to the scalar product (24). 
In the noncommutative case the operators Ji act on any element F from 

the algebra K s  in the following way: 

J i F  = [X;, F]  (30) 

In particular, 

Ji.~j = ieijk.~ k (31) 

The operators Ji satisfy su(2) algebra commutation relations and are self- 
adjoint with respect to the scalar product (25). 

The functions 

~tr ll(X) = Cl.~l+ (32) 

are the highest weight vectors in ~N for l = 0 ,  1 . . . . .  N ,  since 

J+Wu(.f) = Xt[~'+, J~+] = 0 (33) 

For all l > N one has s = 0 in MN. The normalization factor ct is fixed by 
the condition 

1 = IIW,~ll 2 = ( w # ,  ~tPll)N : 

and is given by the formula [Prudnikov et al. (1981), p. 618, equation (36)] 

p21c 2 (2l + 1)![ (N  + 1 )Nt (N  + 2)l(N - /)! 
- ( 3 4 )  

(2/)!! (N + l + 1)! 

The second factor on the right-hand side represents a noncommutative correc- 
tion. For N ----> oo it approaches 1. The other normalized functions WOn, m = 
0, ----- 1 . . . . .  -----l, in the irreducible representation containing Wtt are given as 

i "-1 1/2 ( l - l - m ) !  } j l - m a l t  (35) 
Won = ( l -  m)!(21)!J - arll 

The normalization factor on the right-hand side is the standard one, indepen- 
dent of N. The functions Wtm are eigenfunctions of the operators j.z and J3: 
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J2i~Irt,~ = l(l + 1)~i,, 

J3qt tm = rn~tm (36) 

We see that s~u contains all SU(2) irreducible representations with the 
'orbital momentum' l = 0, 1 . . . . .  N, the/th representation has the dimension 
2l + 1, and consequently 

N 

dim,~r ~ ( 2 / +  1 ) =  (N + 1) 2 (37) 
n = 0  

Comparing this with equation (14), we see that ~ u  contains no other represen- 
tations, i.e., 

N 

~N = ~ )  s~<t) (38) 
1=0 

where ~r denotes the representation space of  the/th representation spanned 
by the functions ~tm, m = 0, -- 1 . . . . .  ----.l. In particular, dim ,~N = (N + 1) 2. 

3. S C A L A R  F I E L D  ON T H E  T R U N C A T E D  S P H E R E  

3.1. The Euclidean field action for a real self-interacting scalar field 
on a standard sphere S 2 is given as 

1 Is dl-I [(Ji(I)) 2 + ~2((I))2 q- V(([9)] 

= I~(r + 1~2(dP) 2 + V(dp)) (39) 

where 

2K 

v(~)  = ~ gk~ k (40) 
k = 0  

is a polynomial with g2r >- 0 (and we have explicitly indicated the mass term). 
The quantum mean value of  some polynomial field functional F[~]  is 

defined as the functional integral 

f D~Pe-St~lF[dP] 

(F[~])  = f OdPe_St,t, J (41) 

where D ~  = H~ d~P(x). Alternatively, we can expand the field into spheri- 
cal functions 

+ l  

alP(x) = ~ atmYt,,,(x) (42) 
l = 0  m = --l  
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satisfying 

J2ytm = l(l + 1)Ytm 

Here the complex coefficients arm obey 

at.-m = ( -  1)maim (43) 

which guarantees the reality condition (b*($) = ~($). We can put D ~  = l-It 
dato Ill, ,  dalm da~m, l = O, 1 . . . . .  m = 1 . . . . .  l. Both expressions for D ~  
are only formal. The measure in the functional integral can mathematically 
be rigorously defined (see, e.g., Simon, 1974), but we shall not follow this 
direction. 

Such problems do not appear in the noncommutative case, where the 
scalar field ~($) is an element of the algebra ~N, and consequently can be 
expanded as 

N +l  

dp(.f) = ~ E atm'tttt"('~) (44)  
I=0 m=-I 

where ~tm(-~) satisfy in "~N the equation 

J~ttlm = l(l + 1)xtrtm 

and are orthonormal with respect to the scalar product (25). The coefficients 
at,. are again restricted by the condition (43). 

The action in the noncommutative case is defined as (see also Madore, 
1992, n.d.) 

S[~] = IN(dPJ2idP + tx2(~) 2 + V(~)) (45) 

and it is a polynomial in the variables at,., l = O, 1 . . . . .  N,  in =- O, 4-I ,  
. . . .  -+l. The measure Ddp = Fit dalo Ill, .  datm da~m, 1 = 0, 1 . . . . .  N, rn = 
1 . . . . .  1, in the quantum mean value (41) is the usual Lebesgue measure, 
since the product is now finite. It is equivalent to one described in Madore 
(1992, n.d.). The quantum mean values are well defined for any analytic 
functional F[~] .  

Under rotations 

"~i ~ "~ = ~ Rij(ot, 13, "Y).~j (46) 
J 

specified by the Euler angles a,  13, % the field transforms as 

N +1 

�9 (~) ---> ~(.f ') = ~] ~ at,,,xltt,,(~ ') (47) 
l=0 "=-l  

Using the transformation rule for the functions ~t,.  (see, e.g., Vilenkin, 1965) 
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�9 t,,,(~,') = ~ D~,m(a, [3, ~)~l,,(~) (48) 
ill' 

we obtain the transformation rule for the coefficients ate, 

at,. --+ at'=, = ~ Dtm',.(a, [3, ~l)atm (49) 

The last equation is an orthogonal transformation not changing the measure 
D~  (see, e.g., Vilenkin, 1965). 

We define the Schwinger functions as follows: 

S.(F) = (F,[~]) (50) 

where 

F . [ ~ ]  = ~ %,~,. . . ; . , .  a; ,",  ---  al.,.. 

~- E Ofllral'"lnmn(~llml' ~ ) N ' ' '  (XIfln"n' ~))N (51)  

The functions (49) satisfy the following Osterwalder-Schrader axioms: 

(OS 1) Hermiticity: 

S*(F) = &(OF)  (52) 

where OF is the involution 

OF,,[~] = ~ ot~t-= I ""In-ran(-- 1)ml+'""nallml "" "atn"n 

(OS2) Covariance: 

S,(F) = S,(gtF) (53) 

where gtF is a mapping induced by equation (49). 

(OS3) Reflection positivity : 

S.+m(OF. | Fro) >-- 0 (54) 
n," e ,. ~ 

(OS4) Symmetry: 

S.(F) = &('rrF) (55) 

where "rrF is a functional obtained from F by arbitrary permutation of the 
at,. in equation (51). 

Note. The positivity axiom (54) can be rewritten as (F 'F)  >-- 0, F = 
E, Ea F~. In fact, the standard formulation of the (OS3) axiom requires the 
specification of the support of the functionals F~. In our case the axiom holds 
in the 'strong' sense, i.e., without the specification. We expect, however, that 
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in the continuum limit (N ---> oo) the issue will emerge. We do not include 
the last Osterwalder-Schrader axiom, the cluster property, since the compact 
manifold requires a special treatment (however, it can be recovered in the 
limit where the radius of  the sphere grows to infinity, but this is beyond the 
scope of  this paper). 

3.2. In many practical applications the perturbative results are sufficient. 
Interpreting the term V(cI)) as a perturbation, we present below as an illustra- 
tion the Feynman rules for the model in question. We give the Feynman rules 
in the (lm) representation defined by the expansions (42) and (43). The 
diagrams are constructed from the following: 

(i) External vertices assigned to any operator arm appearing in the func- 
tional F[qb]. 

(ii) Internal vertices given by the expansion of  V(CI)) in terms of aqm ~ 
�9 ' '  alkra k. 

This gives the following Feynman rules: 
(a) Propagator: 

1 
2(atma~'m') = l(l + 1) + ~2 8 t ' t ~ m ' m  (56) 

where the admissible values of  I and m for ~ =  are l = 0, 1, 2 , . . . ,  m = 0, 
1 . . . . .  l, whereas in the case of ~Jv they are l = 0, 1 . . . . .  N, m = 0, 1, 
. . . ,  I .  

(b) Vertex: 

Vllml,...,Ikm k : gkl=(Ytl,,, "'" Yt~k) for s~= (57) 

Vhml....,tkmk = gkllv(Yllmt ' '"  Ylkmk) for MA, (58) 

(c) Finally, the summation over all internal indices should be performed. 

This procedure leads for ..~/= to finite Feynman diagrams except for 
diagrams containing the tadpole contribution 

co l [ 

T~ ~ ~lm (atma~m) ~ t=0 ~ m=-I ~ l(l + 1) + [tJL 2 : OO 

This divergence is closely related to the divergence of the propagator 

1 
G(x, y) = ~t,, l(l + 1) + I ~2 Ytm(X)Y~m(Y) 

in the x representation at points x = y. This requires, of  course, the regulariza- 
tion of G(x, y), which is, in our case, simply a cutoff in the /-summations. 
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Indeed, for MN all diagrams are obviously finite (since all summations are 
finite). In particular the tadpole contribution reads 

N t 1 

TN=t=0 ~ m = - t  ~ 1(1+ 1 ) +  tX 2 ~ l n N  

For practical applications an effective method for the calculation of 
vertex coefficients Vtjm,,....tkmk is needed, both in the standard and noncommuta- 
tive cases. We shall describe the latter. Since the multiplication by Wt,~ 
acts in the algebra MN as an irreducible tensor operator, we can apply the 
Wigner-Eckart theorem. Then the product Xtrltml(.~)xItt2ra2(~ ) Cal l  be 
expressed as 

I1 + / 2  

~tim~(-~)~t2m~(-f) = ~ (t~m,, 12m2flm)(l~12111)~,n(.~) (59) 
l=lll-121 

where m = - m r  + m2, (ltml, 12m211m) is a Clebsch-Gordan coefficient, and 
the symbol (ltl2 I[/) denotes the so-called reduced matrix element (and depends 
on the particular algebra in question). Introducing the noncommutative 
Legendre polynomials Pt(~) = Wl0(g), ~ = P-I,~3, we find that the previous 
equation leads to the coupling rule 

/ 1 + / 2  

Ptt(~)Pt2(~) = ~ (110, 1201lO)(ttl211l)Pt(O (60) 
l = I11 -- /2 I 

The repeated application of (59) then allows us to calculate the required 
vertices. 

Note. The well-known explicit formula for the usual Legendre polynomi- 
als allows us to calculate the reduced matrix elements 

(1,1211/) = ( l t0 ,  120110) 

that enter the coupling rule in the algebra M~ in terms of a particular Clebsch- 
Gordan coefficient. Similarly, the explicit formula for the noncommutative 
Legendre polynomials presented in the Appendix allows us to deduce the 
reduced matrix elements entering the coupling rule in the algebra MN- 

4. CONCLUDING REMARKS 

We have demonstrated that the interacting scalar field on the noncommu- 
tative sphere represents a quantum system which has the following properties: 

1. The model has a full space symmetry--the full symmetry under 
isometries (rotations) of the sphere S 2. This is exactly the same symmetry 
that the interacting scalar field has on the standard sphere. 
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2. The field has only a finite number of modes. Then the number 
of degrees of freedom is finite, which leads to the nonperturbative UV 
regularization, i.e., all quantum mean values of polynomial field functionals 
are well defined and finite. 

Consequently, all Feynman diagrams in the perturbative expansion are 
finite, even the diagrams containing the tadpole diagram, which are divergent 
in the model on a standard sphere. Technically, the tadpole is finite because 
of the cutoff in the number of modes. In our approach, the UV cutoff in the 
number of modes is supplemented with a highly nontrivial vertex modification 
[compare equations (57) and (58)]. Moreover, our UV regularization is non- 
perturbative and is completely determined by the algebra MN. It originates 
in the short-distance structure of the space, and does not depend on the field 
action of the model in question. From the point of view presented above, it 
would be desirable to analyze a quantization of the models on a noncommuta- 
tive sphere S 2 containing spinor or gauge fields. In the standard case such 
models have a more complicated structure of divergences. It is evident that 
our approach will lead again to a nonperturbative UV regularization. 

The usual divergences will appear only in the limit N ---> oo. It would 
be very interesting to isolate the large-N behavior nonperturbatively. By this 
we mean the Wilson-like approach in which the renormalization group flow 
in the space of Lagrangians is studied. This can lead to a better understanding 
of the origin and properties of divergences in quantum field theory. Another 
interesting direction of research would consist in making connection with 
matrix models, where, from the technical point of view, very similar integrals 
have been studied. We strongly believe that qualitatively just the same situa- 
tion will occur on the four-dimensional sphere S 4, too. Investigations in all 
these directions are underway. 

APPENDIX 

With respect to the scalar product 

(Pt, P,,,)N = IN(PIPm) = ~lm 

we define the truncated Legendre polynomials 

P I ( ~ )  = ~tato + ~t-2a~ + . . . .  l = O, 1 . . . . .  N 

as orthonormal. Here the noncommutative integral is given as [see equa- 
tion (19)] 

N 1 
IN(I~ n) = ~ I~ 

k=oN+ 1 

where ~k = [NI(N + 2)]ln(2k/N - 1). The polynomials Pt(~) can be obtained 
from the recurrence relation 
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am 

where Cm = I(~PmP. , -O and am = [IN(~2P 2) - c2~] v2. 
The ~ v a l u e d  truncated spherical functions X~lm(.f ) satisfy the equation 

J ~ t m ( 2 )  = l(l + l)Xtrtm(2) 

Putting Pt(~) = xtrto(X), ~ = -r we find that the last equation reduces to a 
difference equation for the truncated Legendre polynomials 

Pt(~ + ~.) - 2Pt(O + Pt(~ - h) 
(1 - t~ 2) X2 

P,(~ + h) - Pt(~ - h) 
+ 26 2 k  + l(l + l)Pt(~) = 0 

where h = 2/[N(N + 2)] m. This equation leads to the recurrence relation 
for the coefficients a~ appearing in the Legendre polynomials: 

1 ~ t l - 2 r  - 2 r +  
a t ' =  s ( 2 l - 2 s +  1) = ar l 2s - h2 2 s +  hz~-2~-2 

In the limit N ---> oo (or equivalently h ---> 0), all formulas reduce to the 
standard expressions valid for usual Legendre polynomials. 
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